
AUTOMATIC GENERATION OF SIMULATION MODELS FROM NEUTRAL LIBRARIES: AN EXAMPLE

Young Jun Son

Industrial and Manufacturing Engineering
The Pennsylvania State University
University Park, PA 16802, U.S.A.

Albert T. Jones

Manufacturing Systems Integration Division
National Institute of Standards & Technology

Gaithersburg, MD 20899, U.S.A.

Richard A. Wysk

Industrial and Manufacturing Engineering
The Pennsylvania State University
University Park, PA 16802, U.S.A.

ABSTRACT

Researchers at the National Institute of Standards and
Technology have proposed the development of neutral
libraries of simulation components. The availability of
such libraries would simplify the generation of simulation
models, enable component-based modeling, and speed
Internet-based simulation services. The result would be a
reduction in the complexity of simulation modeling and
analysis. In this paper, we consider a discrete-event
simulation of the flow of jobs through a job shop. We
describe the information requirements for the components
in that simulation and provide formal models based on
those requirements. We then derive a database structure
from these formal models and discuss the population of
that database with the data entries for a sample job shop.
Finally, we examine the translators we developed to go
from the neutral representation of the simulation comp o-
nents to the representation required by a commercial
simulation package.

1 INTRODUCTION

Simulation has been a useful design and analyses tool used
to model manufacturing systems for decades. A number of
commercial products, with a range of capabilities and price
tags, are on the market. Each of these packages has its own
user interface for building models, animation capabilities for
viewing the evolution of models over time, and tools for
analyzing the output from those models. The degree of
difficulty in building models, the fidelity of the visualiza-
tion, and the sophistication of the analysis tools vary dra-
matically. Consequently, building, running, and analyzing a

simulation model can be a very time-consuming and error-
prone process.

To address the model building issue, researchers at the
National Institute of Standards and Technology (NIST) have
proposed the development of neutral libraries of simulation
components and model templates. The former would
contain detailed, formal, information models of all com-
monly used simulation components - queues, machines,
transporters, and so forth. Each of these component models
would have views tailored to specific modeling scenarios.
These scenarios would be defined by different modeling
templates - such as an equipment simulation, a material flow
simulation, a supply chain simulation, and so forth. The
availability of such libraries, together with the requisite
translators, would simplify the model-building process. It
would also enable component-based modeling, model reuse,
and Internet-based services, all of which could reduce the
complexity and effort of simulation in manufacturing (see
Figure 1).

After the library of simulation objects is constructed,
each component in the library becomes a basic building
block (module) to model systems of interest. Then, a trans-
lator, which we call a model builder (see Figure 1), will
generate a simulation model for a specific commercial
package from the neutral descriptions of the components. In
this research, model builders for Arena and ProModel have
been designed and implemented1. Each model builder
generates a model for the specified simulation language.

1 Certain commercial software products are identified in
this paper. These products were used only for demo n-
strations purposes. This use does not imply approval or
endorsement by NIST, nor does it imply that these prod-
ucts are necessarily the best available for the purpose.

L i b r a r y o f
S i m u l a t i o n O b j e c t s

F o r s h o p f l o o r
(S c h e d u l e e v a l u a t i o n)

M o d e l
B u i l d e r

E n g i n e
S i m u l a t i o n

D a t a
A n a l y z e r

A n i m a t i o n
V i s u a l i z a t i o n

M o d e l
D e s c r i p t i o n

(N e u t r a l)

S p e c i f i c
S i m u l a t i o n

M o d e l

S h o p F l o o r
(R e a l d a t a)

S t a t i s t i c a l
R e s u l t s

A n i m a t i o n
O r

V i s u a l i z a t i o n

L i b r a r y o f
S i m u l a t i o n O b j e c t s
F o r a l l a p p l i c a t i o n s

U s e r

Consequently, there are differences between the two we
have built.

In this paper, we discuss the model builder for Pro-
Model - the model builder for Arena and a comparison
between the two will be presented in another paper. In
Section 2, we describe the simple job shop that serves as
our example manufacturing system. The simulation will
model the flow of jobs through that job shop. In Section

3, we provide the information requirements for the simu-
lation components. In Section 4, we include a formal,
information model for some of those requirements, show
the resulting database structure, and discuss the popula-
tion of that database with the data entries for our sample
job shop. Finally, we examine the model builder, trans-
lator, we developed to go that database to representation
in ProModel.

Figure 1: New concept using library components

2 EXAMPLE MANUFACTURING SYSTEM

An example shop floor is shown in Figure 2. It contains a
system input buffer, a system output buffer, and three
processing stations - penn1, penn2, and penn3. Station
penn1 has a dedicated input buffer, penn1_in, and a dedi-
cated output buffer, penn1_out. Station penn2 has a dedi-
cated input buffer only, penn2_in, and penn3 has neither
input nor output buffers. The capacity of system input
and output buffers is 100, while the capacity of each
processing station is 1. This shop can make three differ-
ent products: a mouse, a notebook, and a pen. The mouse
requires processing at penn1 and penn2. The notebook
requires processing at penn2 only, and the pen requires
processing at penn3 only. Production of one item of each
product will be demonstrated in this paper.

3 INFORMATION REQUIREMENTS

For the flow simulation used in this project, there are six
classes of objects: header information, experiment infor-
mation, shop floor information, product-process informa-
tion, production information, and output information.

3.1 Header Information

The header information object provides the introductory
information about the simulation file. Each simulation
file has exactly one header information object. The
header information object is composed of a simulation file
name, an analyst name, a layout file name, a save date, a
save time, and a description.

• Simulation file name - The unique name for the
simulation file.

• Analyst name - The name of person that created the
simulation file.

• Saved date - The date of the creation of the simula-
tion file.

• Saved time - The time of the creation of the simula-
tion file.

• Description - A word or group of words that describe
the basic information of the simulation file.

• Layout file name - The name for the layout file that is
used for simulation background.

Figure 2: Example job shop system

3.2 Experimental Information

Each simulation file is associated with one experimental
information object. The experimental information object
describes the environmental setting to run the simulation
file and obtain the requested performance measures. That
environment includes a time unit, a distance unit, a begin-
ning time, a replication time, the number of replications, a
terminating condition, and a collection of output informa-
tion objects. Each output object is composed of a per-
formance measure name.

• Time unit - The unit of time in the simulation file,
usually one of day, hour, minute, or second.

• Distance unit - The unit of distance in the simulation
file, usually a meter or a foot.

• Beginning time - The real value defining the begin-
ning time of the first replication.

• Replication time - The length of each replication.
• Number of replications - The integer value defining

the number of replications to be executed.
• Terminating condition - An optional field to specify

the terminating condition. If nothing is specified in
the filed, the simulation runs until the replication
time.

• Output information - An optional field to specify the
performance name of interest.

3.3 Shop Floor Information

The shop floor information object describes the physical
entities on the shop floor. Each simulation file is associ-
ated with one shop floor information object. The shop
floor information object is composed of a set of station
information objects. Each station information object is
composed of a station name, a capacity, a description, and
a station type information object. The station type infor-
mation object is associated with either a processing sta-
tion information object or a buffer station information
object. The processing station information object is com-
posed of an optional station buffer name and an optional
station output buffer name. In addition, the buffer station
information object is defined by a buffer type item. In the
actual shop floor, there are two classes of stations: a proc-
essing station and a buffer station. If the station informa-
tion object does not include the processing station infor-
mation, it is interpreted as a buffer station.

• Station name - The unique name for the station.
• Capacity - The integer value defining capacity char-

acteristics of the station.
• Station type - Unique identifier for station; e.g. proc-

essing, buffer.
• Processing station information

- Station input buffer name - The optional string
field containing station name for the dedicated
input buffer in the processing station. Note the
input station input buffer needs to be defined ex-
plicitly as a station information.

System
Input Buffer

System
Output Buffer

Penn1_in

Penn3Penn2_in Penn2

Penn1 Penn1_out

- Station output buffer name - The optional string
field containing station name for the dedicated
output buffer in the processing station. Note the
output station input buffer needs to be defined
explicitly as a station information.

• Buffer station information
- Buffer type items - The string field specifying

the types of buffers. It contains four values:
system_input_buffer, system_output_buffer, sta-
tion_input_buffer, and station_output_buffer.

3.4 Product/Process Information

The product/process information object provides the run
time data for a simulation. It is composed of a product
name and a process plan information object. The process
plan object is composed of a process plan name and an
ordered list of operation information objects. Each op-
eration object is composed of an operation number, an
operation name, a description, a station name, a process-
ing time, a next station name, and a routing time.

• Product name - The unique name for the product.
• Process plan information

- Process plan name - The unique name for the
process plan.

- Operation information
- Operation number - The unique identifier for the

operation.
- Operation name - The word or a group of words

defining the current operation.
- Station name - The name of station where the

operation occurs.
- Processing time - The real value defining the du-

ration taken for the current operation. If the sta-
tion is associated with a processing station, this
value is associated with actual machining time.

- Next station name - The name of station that the
job will visit next.

- Routing time - The real value defining the dura-
tion taken moving from the current station to the
next station. In a more complete modeling, an
equipment will be involved such as an AGV or a
conveyor. Therefore, equipment contention will
be included in the model. In the current version
of the document, the material transporters are not
included in the model, and it is assumed that jobs
can move to next station whenever there is avail-
able capacity.

- Description - A word or a group of words that
describe the operation.

3.5 Production Information

A production information object provides the data for
what is produced in the simulation and associated due
dates. The production information is composed of a
product name and a set of job information objects. The
attributes for each job information object include a job
name, a quantity, an arrival time, and a due time.

• Product name - The name of product that the job is
associated with. Using this filed, we can derive the
associated process plan, which is provided by the
product process information object in Section 2.4.

• Job information
- Job name - The unique name of a job. A job is

an atomic object associated with one product.
- Quantity - The number of products to be pro-

duced.
- Arrival time - The time when the current job ar-

rives in the simulation file.
- Due time - The time by when the current job is

wanted to be finished by the customer.

3.6 Output Information

The simulation output is stored in a returned result infor-
mation object. Each such object is composed of a per-
formance measure name, and an associated graph name.

• Performance measure name - The unique name of the
performance name. The contents of this filed will be
specific to the commercial simulation packages un-
less a generic way of specifying the name is created.
This filed needs to be associated with the perform-
ance measure name for the output information object.

• Graph name - The name of graph associated with a
particular performance measure. This attribute is op-
tional since not all performance measures will be rep-
resented as a graph. In general, each performance
measure can have many different types of graphs. In
this research, however, we only allowed one type for
each performance measure.

4 INFORMATION MODELING

Based on the preceding information requirements, a com-
plete information model has been developed in EXPRESS
[2, 4]. Due to limited space, we show only part of that
model.

4.1 Schema

Types, entities, and functions has been defined formally
as follows:

SCHEMA discrete_event_simulation;
TYPE buffer_type_items = ENUMERATION OF

(station_input_buffer,
 station_output_buffer,
 system_input_buffer,
 system_output_buffer);

END_TYPE;

TYPE name = STRING;
END_TYPE;

TYPE station_type_information = SELECT
(processing_station_information,
 buffer_station_information);

END_TYPE;

ENTITY shop_floor_information;
station_data : SET [0:?] OF station_

information;
END_ENTITY;

ENTITY station_information;
station_name : name;
capacity : INTEGER;
station_type_data : station_type_

information;
description : OPTIONAL text;

 UNIQUE
UR1: station_name;

END_ENTITY;

ENTITY buffer_station_information;
buffer_type : buffer_type_items;

END_ENTITY;

ENTITY processing_station_information;
station_input_buffer_name : OPTIONAL

name;
station_output_buffer_name : OPTIONAL

name;
END_ENTITY;

- - - - -

END_SCHEMA;

4.2 Database Instantiation

From the schema in the previous section, we generated a
collection of database tables in MS Access 97 (see Figure
3). The tables in the figure belong to two classes. The
first class contains a table for each entity in the EXPRESS
schema. The second class contains tables that specify the
relationship among the entities.

Figure 3: Database tables associated with the formal EXPRESS model

4.3 Database for Example System

Several database tables associated with the example sys-
tem in Figure 2 have been populated by hand and are

shown in Figure 4. In the following sections, we describe
how we generated the corresponding ProModel .mod file.

Figure 4: Database information for the example system [y1]

a: Simulation header, experiment, and station information for the example system

b: Process plan, product, and job information for illustration

c: Requested_results information for illustration

5 DESIGN OF MODEL BUILDER

The role of the model builder is to create a discrete-event
simulation model from the neutral description of the sys-
tem and the actual data in the database. In that sense, the
model builder serves as a translator. The following sec-
tions describe how that translator works.

5.1 Shop Floor

The first step in creating the simulation model is the con-
struction of the shop floor. The model builder creates this
shop floor from the "stations" table in the database (see
Figure 4-a). Each station in that table is associated with a
"location" template in Promodel (see Figure 5-a). The
data for first two columns in this template come directly
from the stations table. The remaining columns in the
template are defaults. The use of the remaining data in
the locations table is described in Section 5.2.

In general, job shops operate in one of two modes:
push and pull. Push modes implies there is a predeter-
mined schedule that jobs will follow through the shop.
Pull mode implies that jobs go through without such a
schedule. In our example, there is no schedule. There-
fore, we need to implement a pull mode. Promodel pro-
vides the pull capability by default, so no pull logic is
defined.

5.2 Job Flow Through the Shop

The shop floor was constructed so that any possible
routings and processing times can be implemented. To
control the flow of jobs through the shop during a par-
ticular run, Promodel requires explicit values for the
routings and processing times. Variables for these values
are contained in the process template and the routing tem-
plate; exact values are contained in the initialization file,
(see Figures 5-a, 5-b).

The initialization file contains the data for each spe-
cific run of the simulation. The model builder is designed
so that the system is data-driven, the same model can be
run many times by simply changing this file. The initiali-
zation file contains process plan data, which is collection
of 3-dimensional arrays (product_id, operation_id, n)
where n =1,…,5. The meanings of the 5 values of n are:
current location, processing time at this location, next
processing station, travel time, next physical location. The
actual data values are derived from the stations table and
the operations table in the database.

For each Entity-Location pair, the process template
specifies a 3-dimensional variable called Operation. The
first entry is the product_id, the second is the opera-
tion_id, and the third is the processing time. These entries
are read in from the process plan part of the initialization

file, Figure 5-b. For example, the processing time for the
product-id=1, the mouse at penn1, which performs opera-
tion-id=2, is 300; the processing time at penn2, which
performs operation-id=3, is 200. Note that whenever the
Location is a buffer, the processing time is 0.

The routing template contains variables called Out-
put, Destination, Rule, and MoveLogic. Output has the
same value as Entity, unless there is an assembly opera-
tion. Rule specifies the order in which jobs are removed
form each queue; in this example it is defaulted to first-in-
first-out. For each location in the process template, Des-
tination specifies the next physical location that the Entity
will visit on its path through the shop and MoveLogic
specifies the travel time to that location. These values are
read in from the Initialization file as attributes 5 and 4,
respectively. From Figure 4-b, we see that the mouse's
route is input station, penn1, penn2, and output station.
However, from the stations table, we see that the actual
physical path is input station, penn1_in, penn1,
penn1_out, penn2_in, penn2, and output station. As noted
above, this physical path, including all buffers, must be
represented in ProModel. This is accomplished using the
routing template.

5.3 Job Arrival Information

Job arrival data is contained in the arrivals template,
which contains variables called Entity, Location, Qty
each, First Time, Occurrences, Frequency, Logic, and
Disable. An Entity arrives at Location. Qty each is the
quantity of entities that arrive at each arrival time. First
Time is the time of the first arrival, Occurrences is the
number of occurrences for every simulation run, and Fre-
quency is the time between arrivals. Logic is used to de-
fine any arrival logic to be executed by each entity when
it is created. Disable is used to specify whether we want
to temporarily disable this arrival without deleting it.
Each row in the arrivals template (see Figure 5-c) is asso-
ciated with one job in the "jobs" table in the database (see
Figure 4-b). Entity, First Time, and Qty each are read
from the "jobs" table. Location is set to penn_in_storage
since all the jobs are assumed to arrive at the system input
storage. Occurrences is also set to 1. The model builder
is designed so that Logic assigns values read from the
"jobs" table in the database (see Figure 4-b) for prod-
uct_id, operation_id, and due_time. Frequency is left
blank since each entity in a row is created only once for
each simulation run. Frequency logic can be imple-
mented using First time and Occurrences. For example, a
job, whose First time is zero, Occurrences is 2, and Fre-
quency is 10, is identical with two jobs, where Occur-
rences of each job is 1 and First time of each job is zero
and 10 respectively. In this paper, the latter logic is used.
Finally, Disable is set to No by default.

Figure 5: ProModel templates model for the example system[y2]

a: Locations, processes, and routing templates generated

b: Partial initialization file generated

c: Arrivals template generated

Figure 6: Results after simulation run

5.4 Simulation Result Information

Performance names of interest have been provided in Fig-
ure 4-c. Davg(location_Busy) represents the utilization of
resource. The model builder understands this predefined
name for performance measures. After simulation model
has been run, the results have been stored in re-
turned_results table (see Figure 6).

5.5 Implementation

The model builder has been implemented in Visual Basic
5.0. The model builder interacts with MS Access data-
bases though the Microsoft Access 8.0 Object library and
the DAO 3.5 (Data Access Objects) Object library. DAO
is an application program interface (API) available with
Microsoft's Visual Basic that lets a programmer request
access to a Microsoft Access database. The model builder
can recognize templates and objects in ProModel through
the Promodel 1.0 Type library. Visual Basic 5.0 provides
an environment in which we can link necessary external
libraries, Microsoft Access 8.0 Object library, DAO 3.5
(Data Access Objects) Object library, and Promodel 1.0
Type library.

6 CONCLUSION

In this paper, we used a simple manufacturing example to
demonstrate the use of neutral component libraries to
generate simulation models in specific simulation lan-
guages. We included the information requirements for
these components, as well as a partial, EXPRESS infor-
mation model. An MS Access database based on the
EXPRESS model and sample data have been instantiated.
A model builder has been designed to generate Promodel
models from such a database. Given the example manu-
facturing system along with artificial product, process,
and order data, a complete Promodel model was gener-
ated, run, and results reported. Future research will first
consider time distributions to add stochastic behaviors to
the system. In addition, material-handling equipment will
be included in the future research to make simulations
more realistic.

ACKNOWLEDGEMENTS

This work was done as part of the intelligent manufac-
turing systems (IMS) MISSION project (www.ims.org),
which is building an integrated modeling and simulation
platform for extended enterprises and virtual enterprise
networks.

REFERENCES AND BIBLIOGRAPHIES

[1] http://www.promodel.com.
[2] ISO 10303-11:1994(E), Industrial Automation Sys-

tems and Integration - Product Data Representation
and Exchange - Part 11: The EXPRESS Language Ref-
erence Manual.

[3] Promodel Corporation, Promodel Version 4.1 User’s
Guide: Manufacturing Simulation Software, Orem,
Utah, 1998

[4] Schenck, D., and Wilson, P. “Information Modeling
the EXPRESS Way,” Oxford University Press, New
York, NY, 1994.

AUTHOR BIOGRAPHIES

YOUNG JUN SON is a graduate student and research
assistant in the Department of Industrial and Manufac-
turing Engineering at Penn State University. He received
his B.S.I.E with honors from POSTECH in 1996 and
M.S.I.E from Penn State in 1998. His interests include
simulation based shop floor control and automatic models
generation. He was the Rotary International Multi-Year
Ambassadorial Scholar in 1996 and the Council of Logis-
tics Management Scholar in 1997. He was the represen-
tative of the Department of I&ME for the Engineering
Graduate Student Council at Penn State in 1997. He is a
member of IIE and SME. His email and web addresses
are <yxs5@psu.edu > and
<www.personal.psu.edu/yxs5>.

DR. ALBERT T. JONES is currently heading up proj-
ects at the National Institute of Standards and Technology
(NIST) to investigate the functional and integration re-
quirements for the next generation simulation tools. Prior

to this assignment, Dr. Jones spent several years as Dep-
uty Director of the Automated Manufacturing Research
Facility at NIST. During that time, Dr. Jones worked
with various NIST and academic researchers on system
architectures for shop floor control, cell control, and dis-
tributed scheduling. He received his MS in Mathematics
and Ph.D. in Industrial Engineering from Purdue Univer-
sity. Dr. Jones is currently on the Executive Boards for
the Winter Simulation Conference and the Engineering
School at Loyola of Baltimore. He is Manufacturing
Editor for several leading journals. He has Chaired or
Co-chaired several international conferences, and has
served on several proposal evaluation panels for NSF,
NIST, and ARPA. His email and web addresses are
<albert.jones@nist.gov> and
<www.mel.nist.gov/msidstaff/jones.albe
rt.htm>.

DR. RICHARD A. WYSK is well-known for his work in
computer integrated manufacturing, computer automated
manufacturing, computer aided process planning and con-
current engineering. He holds the Leonhard Chair in En-
gineering at Penn State University. Prior to his current
position, he was director of the Institute for Manufactur-
ing Systems and holder of the Royce Wisenbaker Chair in
Innovation at Texas A&M. Dr. Wysk also served on the
faculty of Virginia Tech and worked in industry as a re-
search analyst for the Caterpillar Tractor Company and as
production control manager for General Electric. He is a
decorated Vietnam veteran. Dr. Wysk is the author of
several textbooks. Honors recognizing his research in-
clude the Institute of Industrial Engineers, David F. Baker
Distinguished Research Award, and the Society of Manu-
facturing Engineers Outstanding Young Manufacturing
Engineer Award. Dr. Wysk holds Bachelor’s and Mas-
ter’s degrees in Industrial Engineering and Operations
Research from the University of Massachusetts and a
Ph.D. in Industrial Engineering from Purdue University.
His email and web addresses are <rwysk@psu.edu>
and <www.engr.psu.edu/cim/wysk.htm>.

Page: 6
[y1]Add requested results table in the figure; for example, time in the system or time in the queue.
Page: 8
[y2]Add returned results information in the figure.

